环中极大理想与素理想及其关系研究文献综述
摘要:环论是当代数学研究领域的一大分支。它在抽象代数中占有非常重要的地位,学术界对于环的研究数不胜数。极大理想和素理想是环的两大重要理想。有关于常见环的极大理想与素理想的研究也有很多,但还是没有关于这两大特殊理想之间的联系。本文主要从三个方面进行研究:一、考察常见环的极大理想,二、考察常见环的素理想,三,研究极大理想与素理想之间的关系。
关键词:常见环 极大理想 素理想
- 选题背景与意义
环的概念原始雏型是整数集合。它与域不同之处在于对于乘法不一定有逆元素。抽象环论的概念来源一方面是数论,整数的推广——代数整数具有整数的许多性质,也有许多不足之处,比如唯一素因子分解定理不一定成立,这导致理想数概念的产生。戴德金在1871年将理想数抽象化成“理想”概念,它是代数整数环中的一些特殊的子环。这开始了理想理论的研究,在诺特把环公理化之后,理想理论被纳入环论中去。
环的概念的另一来源是19世纪对数系的各种推广。这最初可追溯到1843年哈密顿关于四元数的发现。他的目的是为了扩张用处很大的复数。它是第一个“超复数系”也是第一个乘法不交换的线性结合代数。它可以看成是实数域上的四元代数。不久之后凯莱得到八元数,它的乘法不仅不交换,而且连结合律也不满足,它可以看成是第一个线性非结合代数。其后各种“超复数”相继出现。
1861年,魏尔斯特拉斯证明,有限维的实数域或复数域上的可除代数,如满足乘法交换律,则只有实数及复数的代数(1884年发表)。
1870年戴德金也得出同样结果(1888年发表)。
1878年弗洛宾尼乌斯(F。G。Frobenius,1849—1917)证明实数域上有限维可除代数只有实数、复数及实四元数的代数。
1881年小皮尔斯也独立得到证明。1958年用代数拓扑学方法证明,实数域上有限维可除代数,连非结合可除代数也算在内,只有1,2,4,8这四种已知维数。可见实数域及复数域具有独特的性质。
以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。