数论问题在中学数学竞赛中的应用文献综述

 2022-09-09 15:59:08

数论问题在中学数学竞赛中的应用

摘要:随着数学竞赛的发展,已逐渐形成一门特殊的数学学科-竞赛数学,也可称为奥林匹克数学.将高等数学下放到初等数学中去,用初等数学的语言来表述高等数学的问题,并用初等数学方法来解决这些问题,这就是竞赛数学的任务.初等数论是研究数的规律,特别是整数性质的数学分支.是数论的一个最古老的分支.它以算术方法为主要研究方法,主要内容有整数的整除理论、不定方程、同余式等.本文主要探索整除理论在中学竞赛数学中的应用.

关键词:初等数论; 整除理论; 不定方程;同余式

一 国外的相关研究

数论是研究整数性质的一门很古老的数学分支,其初等部分是以整数的整除性为中心的,包括整除性、不定方程、同余式、连分数、素数(即质数)分布 以及数论函数等内容,统称初等数论(elementary number theory)。

初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。

1、莱因德纸草书

《莱因德纸草书》﹝Rhind Papyrus﹞是公元前1650年左右的埃及数学著作,属于世界上最古老的数学著作之一。作者是书记官阿默斯。内容似乎是依据了更早年代﹝1849 B.C. ─1801 B.C.﹞的教科书,是为当时的包括贵族、祭司等知识阶层所作,最早发现于埃及底比斯的废墟中。公元1858年由英国的埃及学者莱因德﹝A. H. Rhind﹞购得,故名。现藏于伦敦大英博物馆。该纸草书全长544厘米,宽33厘米。纸草书主要内容有分数的分解式分数的乘法运算;等差、等比数列的问题;圆、正方形、等腰三角形、等腰梯形的面积;体积计算;金字塔问题;比例问题等。莱因德纸草书是了解埃及数学的最主要依据。它准确反映了当时埃及的数学知识状况,其中鲜明地体现了埃及数学的实用性。对我们运用数论来解决实际问题有很大的启发。

  1. 几何原本

公元前3世纪,古希腊数学家欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。